Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 461-468, 2022.
Article in Chinese | WPRIM | ID: wpr-927990

ABSTRACT

To investigate the effects of leonurine(Leo) on abdominal aortic constriction(AAC)-induced cardiac hypertrophy in rats and its mechanism. A rat model of pressure overload-induced cardiac hypertrophy was established by AAC method. After 27-d intervention with high-dose(30 mg·kg~(-1)) and low-dose(15 mg·kg~(-1)) Leo or positive control drug losartan(5 mg·kg~(-1)), the cardiac function was evaluated by hemodynamic method, followed by the recording of left ventricular systolic pressure(LVSP), left ventricular end-diastolic pressure(LVESP), as well as the maximum rate of increase and decrease in left ventricular pressure(±dp/dt_(max)). The degree of left ventricular hypertrophy was assessed based on heart weight index(HWI) and left ventricular mass index(LVWI). Myocardial tissue changes and the myocardial cell diameter(MD) were measured after hematoxylin-eosin(HE) staining. The contents of angiotensin Ⅱ(AngⅡ) and angiotensin Ⅱ type 1 receptor(AT1 R) in myocardial tissue were detected by ELISA. The level of Ca~(2+) in myocardial tissue was determined by colorimetry. The protein expression levels of phospholipase C(PLC), inositol triphosphate(IP3), AngⅡ, and AT1 R were assayed by Western blot. Real-time quantitative PCR(qRT-PCR) was employed to determine the mRNA expression levels of β-myosin heavy chain(β-MHC), atrial natriuretic factor(ANF), AngⅡ, and AT1 R. Compared with the model group, Leo decreased the LVSP, LVEDP, HWI, LVWI and MD values, but increased ±dp/dt_(max) of the left ventricle. Meanwhile, it improved the pathological morphology of myocardial tissue, reduced cardiac hypertrophy, edema, and inflammatory cell infiltration, decreased the protein expression levels of PLC, IP3, AngⅡ, AT1 R, as well as the mRNA expression levels of β-MHC, ANF, AngⅡ, AT1 R, c-fos, and c-Myc in myocardial tissue. Leo inhibited AAC-induced cardiac hypertrophy possibly by influencing the RAS system.


Subject(s)
Animals , Rats , Angiotensin II/metabolism , Cardiomegaly/genetics , Gallic Acid/analogs & derivatives , Hypertrophy, Left Ventricular/pathology , Myocardium/pathology
2.
National Journal of Andrology ; (12): 208-213, 2015.
Article in Chinese | WPRIM | ID: wpr-319518

ABSTRACT

<p><b>OBJECTIVE</b>To isolate, identify and culture human spermatogonial stem cells (SSC) and then obtain purified and enriched human SSCs for research and application.</p><p><b>METHODS</b>We detected the expression of CD90 in the human testis using the immunofluorescence technique and isolated human testicular spermatogenic cells by two-step enzymatic digestion, followed by differential plating and magnetic-activated cell sorting (MACS) with CD90 as an SSC marker. Then we identified the isolated CD90-positive spermatogenic cells by RT-PCR and immunocytochemistry, and meanwhile cocultured them with Sertoli cells in SG medium in vitro.</p><p><b>RESULTS</b>The isolated CD90-positive cells showed a relatively homogeneous characteristic in size and morphology and expressed the genes specific for human SSCs, with high expressions (90.5%) of GFRA1, GPR125, and UCHL1. After coculture with Sertoli cells in the SG medium for 2 weeks, the isolated CD90-positive cells maintained a good activity.</p><p><b>CONCLUSION</b>CD90 can be regarded as a speci- fic marker for human SSCs and used to obtain highly enriched human SSCs by differential plating and MACS. Furthermore, the isolated human SSCs can be cultured in SG medium in vitro.</p>


Subject(s)
Humans , Male , Adult Stem Cells , Cell Biology , Biomarkers , Metabolism , Cell Separation , Methods , Cell Shape , Cell Size , Coculture Techniques , Glial Cell Line-Derived Neurotrophic Factor Receptors , Metabolism , Immunohistochemistry , Receptors, G-Protein-Coupled , Metabolism , Sertoli Cells , Spermatogonia , Cell Biology , Testis , Metabolism , Thy-1 Antigens , Metabolism , Ubiquitin Thiolesterase , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL